WEEK LOAN COPY

brary C

TWO

ing Copy

irculat

i

L

o

Is Is a

#;

=

T




DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



FERMILAB-Pub-78/60-THY
July 1978
issued September 1979

Hadron Masses in Quantum Chromodynamics
on the Transverse Lattice

WILLIAM A. BARDEEN
Fermi National Accelerator Laboratory, Batavia, lllinois 60510

*
ROBERT B. PEARSON
The Institute for Advanced Study, Princeton, New Jersey 08540
and
Fermi National Accelerator Laboratory, Batavia, lilinois 60510

ELIEZER RABINOVICI' ¥
Lawrence Berkeley Laboratory, Berkeley, California 94720

ABSTRACT
Calculational methods are formulated for the transverse lattice version of
Quantum Chromodynamics. These methods are used to study the Jow lying

spectrum of gluon bound states in the pure Yang-Mills theory.

$Work supported in part by the High Energy division of the U.S. Dept. of Energy,
Contract No. W-7405-ENG-48,

% Operated by Universities Research Assoclation Inc. under coniract with the Energy Research and Development Administration



-2~ FERMILAB-Pub-78/60-THY

L. INTRODUCTION

It has been proposed that the strong interaction aspects of particle dynamics
can be described by a Lagrangian field theory, Quantum Chromodynamics (QCD).
The theory consists of colored quarks interacting via colored gluons. The original
applications of the theory to short distance and light cone dominated processes
have been extended to encompass various inclusive proc«ass;e*sl (e*e” » n jets,
pp - y*y “X and others) and maybe even certain exclusive processesz {elastic form
factors of hadrons). Renormalization group equations and general factorization
properties were used to analyze those phenomena perturbatively.

The applications of the same methods to study the large distance structure of
the theory have not resulted in the emergence of a spectrum consisting of only
color singlet bound states.? Various attempts have been made to incorporate non-
perturbative effects in QCD. Semiclassical methods utilizing instantons and other
configurations have important consequences for the chiral structure of QCD and
may even result in an effective MIT jike bag theoryga The strong coupling aspects
are emphasized by reformulating QCD in terms of a lattice gauge theory. Wilson®
has proposed a four-dimensional eulcidean lattice version of QCD while Kogut and
Susskmd6 have studied a Hamiltonian formulation of QCD. Within those lattice
theories bound state spectra have been calculated in a strong coupling expansion.
This was done for pure Yang-Mills theory7 and for colored quarks imeract’u'sgs"8
with fermions. These calculations are qualitatively successful for aspects not
involving chiral symmetry and seem to result in a string-like picture for excited

bound states. Finally *t Hooft®

has proposed the l/NC expansion, where the color
group is taken to be SU(NC), which leads to a pictorial simplification of the theory.

The task of summing the surviving planar diagrams stil] seems formidable.
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However if QCD confines, then for large N ¢ 8 valence quark picture emerges for
the meson sector which will consist of an infinite number of stable hadrons. The
pure glueball sector will also contain stable hadrons decoupled from mesons.
Another approach to QCD was discussed by Bardeen and Peatson“ (to be referred
to as I). It will be reviewed in section I, Its structure is nontrivial in both the
weak and strong coupling regimes. In this paper we discuss the calculation of
hadronic glueball masses in the strong coupling regime. In section Ill we discuss the
non-perturbative jongitudinal dynamics of the model. Bare hadrons are constructed
from gauge potentials and 'real™ color degrees of freedom. In section [V, a
perturbative strong coupling analysis of an effective field theory for bare hadrons

is performed resulting in hadrons with a transverse motion. The calculations are

discussed in section V.

. TRANSVERSE LATTICE VERSION OF QCD
In this section we will review the transverse lattice version of QCD givenin L
First we will present the Jattice action functional in terms of the link variables
introduced by Wuson.s Then we will discuss the transformation to linearized
degrees of freedom. Finally we will quantize the resulting linear theory. Since this
paper is only concerned with the pure Yang-Mills sector of the theory we will not
discuss here any of the problems associated with describing fermions on the lattice.

1 we use the matrix form of the gauge field
A = igA T (2«;5)
B M

where the group generators are normalized by the conditions
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TP = 6272, T3, TR s 6206TC , 2.2

then the QCD action has the form

A = J’d“x-ﬂ-imc”"cw) (2.3)

%

where the Yang-Mills fieid strength is given by

= - o 2.4)
Gy = 3,Ay-3A < 1A, Al (

PV

Since there are only two dynamical gauge fields we choose a way of putting
the theory on the lattice, gauge, and quantization procedure which exploits this
fact. First we choose to leave the lomgitudinal coordinates t and 2z and the
jorgitudinal gauge fields At and A, intact while we make the transverse

coordinates discrete. Thus

.;1 = alng, ny) (2.5

where a is the lattice spacing and n, and ny are integers. The transverse gauge

fields A_ and A_ are replaced by link variables U} Q(t, z) which are associated
® It

b4 X

with the Jink between the lattice sites ;J. and ;l +& wheres = 1,2 and G= (a, 0) or
(0, a). The U's also depend on the longitudinal coordinates t and 2. The U's may be

interpreted as the phase factors

% +8
exp | ig J. A

8
Xy

dx 8 . {2.6)
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We may now write down a discrete version of the QCD action which reproduces
(2.3) in the naive continuum limit (ga = 0} with the expression {2.6) is substituted

for the U's and the exponential is expanded out in powers of a, viz.

2

A= [dd] ] 25 wilc"Ve
[.’: A sV ;82 w\)

i [T o
* . I -5 o (DDU;{[»GD U;J_’m)

X QN g
1 b¢
+ _% Ex, . g-—-“a tr (U;L’QU;:L 3, ale+B’aU£i ,,8) } (2.7)

where ¥,v = 0,3 and B = 1,2. The {(fongitudinal} covariant derivative of the Jink

variables is given by

>
D U ot (3u4 AM(xL»U;l,

> a
Yz, - U;“mAu(xi +@) . {2.8)

o
The action for the longitudinal gauge fields is unchanged from the continuum
except to replace integrals by sums. The action for the purely transverse gauge
flelds is the familiar "plaquette” action used before in jattice gauge theories. The
mixed term involving DMU is the simplest local interaction which reproduces the
corresponding mixed term in the continuum. Most importantly the lattice action
{2.7) remains gauge invariant under the restriction of the original gauge group to
the lattice. We can use this gauge invariance to compietely eliminate the

longitudinal gauge fields AM {rom the theory. This may be accomplished by using
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light-cone  gauge .(Aaxmo-%)/ﬁ =0) with light-cone quantization
(tax®=0? + WD so that A, becomes a parametric field which may be
eliminated by its equations of constraint in favor of a nonlocal Coulomb

interaction. In this respect the treatment at each transverse lattice site is the

. 2
same as the discussion of two dimensional QCD given by several authors.!

Explicitly setting A_ to zero, the terms in (2.7) which depend on A become

- 2 > 9 > >
A = [dx"dx §Z [%“J“J vgh o3

+ g ;%zr( N xi aa“‘u%”“) -h..:] (2.9)

where we are using the Hermitian form of K? in the vector representation and the

current 5__ is given by

. .. 2.10)
): u{?( 7,0 _U;;M U;rmia_u;&_%a)} .0

The Euler-Lagrange equations for i ., Bre

« 53 (2.11)
2

-
which contain no “time” derivatives 3* =8 /37 and so can be solved for A_ in terms
@ - "
of 3 without upsetting our subsequent quantization. Eliminating A _ by (2.1 1) gives

an effective action which only depends on the U's.
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by - 1 - ¥ I
A= ] e ;E[? g W(auuxmaa pra)

i
"gal o L tr( %,0Y%, 6,8 fwﬂm *:M)

2

+ f dx'w-% fx-x" lf_(x’)«ﬁ_(x'v)] T (2.12)
ba

In order for this action to give the usual QCD action in the continuum it was

necessary to assume that the matrices U have the form
Loz
U= emﬂT'A {2.13)

so that over small regions of space U can be expanded in a Tayior series. (This is
the same as the "spin wave" expansion used at Jow temperatwe in statistical
mechanics. In ] it was incorrectly stated that in order for the expansion to be valid
it was necessary for U to develop a vacuwm expectation value. It is actually only
necessary that over any small region of transverse space that the differences
between U's be small.) Thus in particular we are assuming a functiona) measure for
U which restricts it to the space of unitary matrices. There are several reasons
why this is not the correct choice if we wish to describe physics correctly. The
first and most mundane is that there is no compelling reason for finite values of the
lattice spacing a to use this measure. Any measure which preserves the remaining
gauge invariance under gadge transformations which are global in the longitudinal
coordinates ¢ and z (i.e. a global SU(n) associated with each vertex of the
transverse lattice) is a priori a suitable candidate. The correct measure can only
be determined by a real space renormalization group analysis but might take the

form
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. $
aut que & EV@UUD gt auswt u - Dstdertw - (2.14)

a<0

where U is allowed 1o be a compiex general matrix, and dU is an unrestricted
measure, This potential, V, may depend on the lattice spacing, a, and the
invariants, U?U and det{U). Put simply the variables of a lattice theory can never
describe the underlying continuum theory exactly but are supposed to represent, in
an aggregate way, the nearby degrees of freedom of the continuum- theory. If the
microscopic variables satisfy a constraint the new aggregate may not, and we may
wish to choose a linear variable to describe the average behavior of a collection of
nonlinear (l.e. unitary) variables. A more rigorous argument for the above
statement comes from the, now exactly krmwn,13 behavior of the nondinear {O{n))
¢ -mode! in two dimensions. The local degrees of freedom are nonlinear, i.e. satisfy
a constraint, and in greater than two dimensions the field would develop a vacuum
expectation value and the spectrum would consist of (n-1) massless Goldstone
bosons. In two dimensions the particle structure of the theory contains (n) massive
scalars transforming under a linear realization of the symmetry group. Particle
structure is inherently a large distance property and thus depends on the correct
aggregate variables and not directly on the microscopic variables. Any physical
description of the theory in terms of the underlying nonlinear degrees of freedom
must be highly nonperturbative, but it is possible to achieve a much simpler
description of the physics with an effective action in terms of explicitly linear
varjables and their interactions. For large n the form of the effective action for
the O{n) nonlinear g-model can be constructed ex'micmy.,m In the action (2.12) the
kinetic energy terms for U are identical to the action for an SU(n)@ SU(n)

nonlinear o-model defined at each link of the transverse lattice. If the other two
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terms of the lattice action which couple these c-model systems together do not
modify the above conclusions then the physically correct variables would be some
linear variables to replace the U's as in (2.14). H we knew the exact behavior of
the SU(n) x SU(n) o-model we could rewrite the action (2.12) in terms of linear
variables without approximation. As we don't, we adopt the ansatz (2.14) with a
minimal set of operators included in V. The coefficients will have to remain as
free parameters to be fi? to the desired spectrum and be eventually determined

through the continuum light analysis. It is useful to introduce the scalar field

i
Mo =z - Ll
x}; 9% 4 le 3% °

The effective potential takes the form

Vo= et ) o n el 0« et MO oAl detM) e hecl 5 e L (2216)

Since in Jater chapters we will make use of the large N expansion only the first two
terms in (2.16) will play any role in our quantitative analysis. Thus we can write

the action in terms of M as

- Fdse™ - B -
A= [ dx'dx %{Egtr(auhﬁﬁjaa Mxpa)

2 t 2
s u g "(Mxl,mMi{“u) s 3, tr(( Mﬁlﬂw‘lﬂ) )

(8]

g . S SR ¢ ‘)
v at 23 fr {M;mexl Q’ﬁpam.;l GBPQM% -

8 z 4 < )
o fax ;ifi' 2 -x” (505 ) } . @47

(2.15)
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In this version of the action M is a £l n x n complex matrix of fields.

We have discussed in some Jength the reasons why we have chosen the form
{2.17) for the action of the theory. In return for a more physical starting point for
the description of the physics, we have given up exact knowledge of some of the
parameters which must be fit to the desired spectrum. We feel that there should
exist an exact transformation to an effective linear theory derivable by
renormalization group analysis bqt have not carried this out. The remaining task of
this section is to quantize the action (2.17) in the light-cone. This is standard!?

and presents no new difficulties. The Hamiltonian corresponding to (2.17) is given

by

P* = H = [dx- J | u? tr(m«» Mi )-
s g [t pelug 0

N

+ + 2
" zﬁ“(Mxi,aMxy&,BMXy&mej 98) - A g tr((Mil?mei,m) )

-f dx"f-g =" X'ﬂﬁ‘(x’)ﬁa(x") ] . (2.18)
&

The link fields may be decomposed into creation and annihilation operators in

momentum space as

@
i dk ~ikx” | nt +ikex” :
M;j_ .G z m IQ zﬁ[ﬂxlw j e < B,—{L Em,k e ] (2.19)

where the A’s and B's obey the equal lightfront commutation relations
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(A, AL 1 = 18,81 = 2xstc-i . (2.20)

in the subsequent sections of this paper we will study the spectrum of the
mass operator uz = 2P*P” by disgonalizing it in the space generated by the

decomposition (2.19) when limited to states containing few particies.

. LONGITUDINAL DYNAMICS
In this paper we study the pure Yang-Mills sector of QCD based on the
effective action of the previous section. Since the full theory cannot be solved we
seek a practical and physically motivated approximation scheme. The principal
ingredients of the scheme we propose are 1) a perturbative expansion In the terms
in H responsible for transverse motion on the lattice, 2?) a perturbative expansion in
the nonlinearities introduced by the effective potential for the link mesons, 3) a
topological expansion in the non-planarities of link meson interactions. The
jongitudinal free link meson dynamics and the jongitudinal coulomb m?mﬁw witl
be treated exactly. Although we performed a nonpertufbative step by changing
from the original gluonic degrees of freedom to the link mesons we have not yet
constructed hadrons. In this section we shall study the transformation from the
link meson gluons to intermediate hadronic degrees of freedom, the bare hadrons.
This transformation is characterized by a single parameter and may have

accordingly weak, strong or intermediate coupling features.
We start by showing how confinement arises in this approximation as a
consequence of both symmetry and energetics: Using the transverse Jattice and the
light-cone gauge, the gluon dynamics have been sépamted into link mesons and

coulomb potentials. The link mesons connect (x” % ) sheets and interact in each
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sheet via coulomb potentials which are instantaneous and confined to the given
sheet. All states of finite energy are singlets with respe& to color rotations at
each transverse site. It is this feature of local color confinement which leads to
binding of the link mesons. The bare Hamiltonian which governs the longitudinal

dynamics of the link mesons may be written as

2 +
H, = deytte(M M)
o ’BEZI Yo

ba Na
2 2 .3 (Coul
“KY v dxdy |x - y |3, (x} =3 () {3.1)
%" n
where
3 LS e
EE‘ . é(w A Memai_mg otk Mn_&mﬁ_"MMﬁ) . 062

The notation Coul. signifies that we are to keep only the direct coulomb potential
part of the interaction and not those parts which produce or annihilate pairs. Using

the expansion of M into plane wave creation and annihilation operators HO may be

rewritien
2
® W
dk Yo + +
Hy = n,,);x J’o %= m(Ak’g, Pona * BanaBion a)
2 = dos

- ;f;; Kg ! mﬁjglq%fﬁ(—q) 3.3)

where

i3 FERMILAB-Pub-78/60-THY

3 v T, +
Jﬂ(q) z xg f@ me(k"qu°an(k°((“\kﬂk¢q}ma
e By -] A sl s Y
~ By oqBx (X koq i n-8,a" KBkeg -Gy ) . (3.9)

In 3g) pair operators have been dropped. The coulomb interaction represents a
momentum transfer g from one link to another with a propagator 1/q2° The
integral is infrared divergent when g =0 and this divergence is regulated by a
principal value prescription. It may be shown that the properties of color singlet
states are independent of the way in which these infrared divergences are
regulated.

By construction HQ conserves the number of links or antilinks. The
eigenstates of Hy, are thus all color singlet that can be initially classified according
to the number of link mesons in each state. In this gauge the linked mesons may be
ascribed the role of "valence gluons.” The mass spectrum of each "number sector”
is infinite and discrete due to the linear coulomb potential. Hu also conserves the
total longitudinal momentum and the group representation at each vertex, although
we only consider states which are color singlets at each vertex. The simplest
nontrivial sector of Hy consists of one link and one antilink meson between the
same pair of vertices. Such states are created by the action of A‘;‘ aB:a on the
ground state. The only way to make a group singlet at both ends fromnthi; operator

is to take the trace of the matrix product. Thus we consider the state
[p> = & Rdxda(x)(:lx(l - e at gt jo> (3.5)
R x *Pyna - (1-0)Pyn, & . :

The extra factors have been introduced so that the norm of this state is
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<PIQ> = 2PS(P-Q) (3.6)
if ¢ is normalized to
i 2
j; dx{elx)]© =1 . (3.7)

Applying Ho to this state gives

2
L i
HylP> = 53 L I o et o 1o (ATED ) 10>

| 2°Cy § ga@sp? V1 ! 4
s ( ) & 1 sxotxaxtia s s 1o

2 0 2q(q~P)2
2
+ o+ P 8Cy by gl %
H(AXPB(LX)P) §O>-ﬂg mgz g W R f@ dy${y)i2y{i-y))
GroyM1-x) + 1)/ ] B AToB0) 30 ) 10> .G

To be an eigenstate |P> must satisfy the equation

M2 .
HO IP) = ﬁ ﬂ P> . ° {3.9)

Projecting out the momentum components gives the integral equation for ¢

2
2g5°C
Mzﬂx) =z (ug~> ZN 5
wa 0 qlg-P)

2
28%C,, .1
t N . (3.10)
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In the first term on the right-hand side the quantity in brackets is the renormalized
mass, This equation differs from the bound state equation obtained in the "t Hooft

12 in two respects. First the current vertex of a boson introduces the

model
additional spin factor (x+xW{{-x)+{1-xMN/ (% xx(T-x{1-x")) and second there is an
overall factor of two since the links are bound by two coulomb potentials, one at
each end. ‘

We do not know an explicit form of the solution to this equation; nevertheless
one can recognize some qualitative properties of the solutions. Since the equation
is invariant under x<+{l-x) with ¢{x) = 2¢{l-x), we may classify states as being
even or odd with respect to this symmetry. 4$(x) will have power behavior near

x » 0, or 1. If we suppose $(x) » xB near X + 0 we obtain the consistency condition

2
2_3 Cn ”xdzze'%(i +2)
Z‘Waz 0 (1- 2)2 %0

u

from the requirement that the leading singularity in x vanish. That the integral to
converge at both ends requires -% <8 < % I B> %, the integral approaches a
finite limit independent of x as x +0 so there is no solution, Performing the

integral gives the condition on 8

2
2 2y

There are two solutions in the range -% < 8 « % for gny positive value of uzﬁ There
are no sojutions for negative uz which ultimateﬁy will imply that the lightest bare
hadron is massive. For the limiting case uz =8=0, d;(x)% 1 fails to be a solution

and the bound state mass remains finite. Thus at the bare hadron approximation,

3.1

ue o= 3 #Ban 78 . (3.12)
w2
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glueballs are inherently heavier than usual gq mesons. One could also note that the
same feature holds in the strong coupling limit on the Wilson lattice and is a
general property of the theory. An analysis of the self adjointness of HQ rules out
the negative sofution for 8. For highly excited states where the end point behavior
is unimportant and this equation is effectively identical to the 't Hooft equation
except for the previously menai;.med factor of two, thus if one relates these bare
hadrons to the spiniess daughters of the Pomeron trajectory, the pomerdh's
trajectory would have half the slope of the “usual” particle trajectories. The
parameter B determines the features of bare hadrons. For small 8 they are
strongly bound states while for B near % they are weakly bound systems well
described by two link mesons. The physical hadrons will eventually be labeled by a
definite 8.

in order to proceed with our program, we need to know the eigenvalues and
eigenfunctions for the bound states in the two link mesons sector. A numerical
procedure allows us to compute accurate values for the eigenvalues and

eigenfunctions ¢{x). In particular, we consider as a basis set of functions

000 = Gatt - 0P P () (3.13)

where P (x} is an nth order polynomial in x which is either even or edd under
Kool -}, U the Pn are chosen as the appropriately normalized and scaled Jacobi
polynomials the é,'s provide an orthonormal basis. One may then diagonalize the
finite dimensional matrix Hm,n =<m] Ho] n> The eigenvalues provide estimates
to the true eigenvalues which converge rapidly as the order of the matrix is

increased. The eigenvectors which are the expansion coefficients of ¢{x) in this
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basis also provide converging estimates to the wave functions. The evaluation of
the matrix elements can be performed analytically. First the polynomials are
expanded as power series in (x(1 - x)" or {1 - 2x}{x({1 - x))" and then the integrals

are performed using the identity

D200 - 208 (aIr(@)
lx-y 2 2%%°23(5 4 8)1a + HIT(B + %)

i
| dxdy %(} -
g

The convergence of ¢{x) at the end points is only algebraic due to the presence of
subdominant singularities. As these singularities are weak (-rxs’im(x)),, the
convergence is nevertheless rapid. However, if we require higher derivatives of
${x), the method would fail to converge. In all subsequent applications the matrix
elements of ¢ which are needed are not highly sensitive to the end point behavior
so this is not a restriction.

In Fig. | we plot the values of mé versus n the principal quantum number for
8 = 0.1, For fixed 8, M2 increases with n approaching linear dependence on n, for
large no

Returning to the whole lattice theory, the spectrum of HO in the two body
sector consists of a set of coulomb bound states which may be labelled by a
transverse coordinate K, a polarization G =%, ¥ indicating the orientation of the
bound state with respect to K, a quantum number n indicating the excitation of the
state, and a total longitudinal momentum P. We may construct from this basis,
states which are eigenstates of transverse momentum, but there would be no
dependence of the energy on transverse momentum because of the local nature of
HO" This unphysical restriction we will approximately remove by the perturbative
treatment of the remaining terms in H. To do so we must introduce the four body

bare hadron states.

o (3.18)
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There are several distinct ways to place four links on the lattice so that group
singlets may be formed at every vertex. These are indicated in Fig. 2. The fact
that all the states should be color singlet at each transverse site leads to
difficulties in defining the N. gluon state at each transverse site lea&s to
difficulties in defining the Nc gluon state in the limit N P this is like the baryon
problem for quarks and thus we do not discuss in this work three link meson states,
etc. For the open boxes 51,2 there is only one way of forming a group singiet
which is to trace the group indices around the box. Proceeding as in the two body

case we define a general state

1
1e> = ";—% IO i dxod g, 8(1 = x) = Xy = Xg = xgIblx s X5y X35 Xp)

S [t Gt ot ot
(2 228528, n(A A zPB"aps"uP)w) (3.15)

le X

with the normalization condition

i .
fo dxndxzdxgdxqﬁ(ﬂ =X - %y = Xg -x@)w (5 39 %35 Xg) ﬂ2 = | . (3.18)

Applying HO and projecting out momentum components leads to the bound state

equation

Mz@ = M2¢ g ‘;%* + (N-%) (C12+C23+C3@¢CM)Q (3.17)

i

where
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2 :
C.p= - Fdndn.' 8(x, + %, - x." - x.%) !
i ,ﬁf Ut e I | [%; - %0

§loons Ry socs xj', wllx; ¢ xi")/l&/ xixjxi‘xj’ . (3.18)
When four iinks impinge on a vertex there are two ways to make a group singlet.

For example Dz could be drawn in the two ways shown in Fig. 3. It turns out that

for Jarge N (the number of colors) these are the correct eigenstates, In group space,

of HO with | 1> a true four body bound state and [2> two independent two body
bound states. For general N we must be more careful. The two orthogonal
combinations are | 2>={[l> 2 ﬂz»)NZNB(N 2 1) In terms of these one obtaing
the bound state equation valld for the C and D configurations

2,2

Mot = et o o (V- Gy + Cpo "~ }Cp- Cpg +

b4
+Cpy+Cp3-Coy+ o + BLC 5 0 €y s Cog 0 €300 % s

N1

-1 F
# 7= (C 5+ Cg4 = Cjy =~ Cy3)b o (3.19)

In the limit N+ o neglecting nonleading terms one obtains the two uncoupled
equations

miol = wlelzL oMy, 0 Cpy 0 05 0 ¢y 0!
1

29?2 = w2efs %E +2N(C,, + Coh . (3.20)



=20~ PERMILAB-Pub-78/60-THY

The equation for |I> is identical to the equation for the B configurations. The
equation for | 2> decouples the variables (xp x@) from (x4, x4) and will reduce two
independent two body states. For the E configurations, similar results are found.

If we adopt the approximation of keeping only the leading contribution in the
1/N expansion all of the possible configurations of four links on the lattice are
described by the same bound state equation, or reduce to two independent two body
bound states. As we shall see later in the same approximation only the four body
bound states will contribute to the perturbative expansion of the transverse
dynamics.

Many of the qualitative features of the two body equation apply to the four
body equation as well. In particular the consistency condition that the most
singular power cancel when each of the X > 0 requires that ¢>(..,.,xi..,.,) 4 xis as x;, + 0,
where B is the same as given in Eq. (3.12). The wave functions may also be
classified according to their symmetry under exchanges of various indices since the
bound state equation is invariant under cyclic permutations of the four variables or
the reverse of their order. This is the symmetry of the dihedral group Dlo which has
five irreducible representations four of which are one dimensional and one of which
is two dimensional. Thus the spectrum will be characterized by five independent
trajectories one of which will be populated by doublets. The WKB approximation to
bound state equation is related to the spectrum of normal modes of a 3-simplex.
Asymptotically the density of states only depends on the volume and dimensionality
of the region and behaves as n(M?) = (Mz)3 as M2+ @, or Mg behaves roughly as
alf3, ’

The solutions of the bound state equation may be computed approximately

just as in the two body case by constructing a variational basis
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%,n("[” Xgo Xgp x@) = (xlxzxaxa)sl”ﬁ(xi, g5 X35 x@) {3.21)

where Ry =leox g = Ry =Ry, and the Pg are chosen as linearly independent
polynomials in the four variables which transform irreducibly with representation ¢
under the group Dl@" They are orthogoﬁa.! with respect to a, but it is not
particularly useful to require them to be orthogonal with respect to n since this is
easily dealt with in the final numerical diagonal izatiam The eigenvalue equation is
then cast into the form of a {finite dimensional matrix eigenvalue problem in each
sector separately by working out the necessary integrals analytically. This part of
the calculation was greatly facilitated by the algebraic manipulation program
MACSYMA. The resulting solutions to the matrix problems provide estimates to
the masses and wave functions as before. The details of this calculation have been
relegated to Appendix A.

Patterns of the radial excitations are now presented for our numerical
caleulations. The ground state energies of the various sectors (including the even
and odd two-body sector) are plotted as a function of 8 in Fig. 4. Note ﬂmt all
ground state energies tend to some finite fixed valie as 8+0. In particular the
smallest two-body eigenvalue approaches = 1r2/2; the symmetric 4-link meson Al
seems to have a lower limiting value than the odd 2-link meson state. In Fig. 5
another lool at the spectroscopy of bare hadrons is given. All the results can be
generalized to include hadrons with a higher Jink meson number; however in the
spirit of the approximation scheme one wants to explore the conseguences of
truncating the link mesons sector at some small number and at a latter stage check
that indeed such an expansion is convergent. By now enough information about the
bare hadrons has been accumulated and one may proceed to evaluate the full

Hamiltonian in the Hilbert state of bare hadrons.
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I¥. TRANSYERSE DYNAMICS

The bare hadrons constructed in Sec. [If from link mesons with coulomb
binding are static on the transverse lattice. In the full Hamiltonian there are
additional terms which generate nearest neighbor residual couplings enabling the
various bare hadron states to move along the transverse lattice. They also break
the conservation of link meson number mixing various n-link meson states. In
particular, our calculation involves the mixing of two and four body bare hadron
states. This effective field theory of bare hadrons is treated as a strong coupling
perturbation expansion.

The various residual couplings can be identified by examining the full
Hamiltonian governing the motion of the system. These terms are generated by the
coulomb interaction, the magnetic interaction, and local potential interactions.

The coulomb terms are identified by expanding the current.current inter-

action, Vcc, in terms of creation and annihilation operators. We obtain

-

2 +
Ve = g £ ] %Jn(k)dn(k) @.1

where the Fourier transform of the current is given by:

- )
~ , T T
el ! ‘,%,3s&k-qoqxqﬂ-qmmm(qmnmm(q'»

+
+ Slk-q-qHeg - DAL, (@B (q)

*8krq-qig- un:,nm f(q)Bg,ma(q%

+

v 8k » g+ qNg-qIA ¥ (qmmm,n

Ty G

{q . (&.2)
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In Fig. 6 we show the various vertices generated by this interaction, Figs. 6(a) and
(b) show the coulomb scattering vertices, already used in the longitudinal dynamics

calculations, which correspond to the terms

1 1 v +
7R T sk -q +qu»q’)Aq,Aq

L1 e st
mm&& q + @X-q q)Bqqu .

The new vertices, Figs. 6(c) and (d), describe coulomb production and annihilation

and are given by
1 i Mo - aa
75 ma(k*q+q)(q q)f\qﬁq,

1 1 g oM - el
mm&(k q - ¢'}g quBq“ .

‘ The transverse magnetic term, which we call the non-local box, also gives
rise to scattering and production terms as shown in Figs. 7{(a) and (). The

scattering term (Fig. 7(a)) is

BnLp

- Slu "+ u’ -y - W)
) q Y-y - YD) T

and the production term (Fig. 7(b)) is

EnLp

= §u,’~u, - o Uy ) gy
zal i D e
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As noted in Section I, the linearization of the link meson degrees of freedom
is only consistent if we add Jocal potential terms to the effective Hamiltonian.
One necessary term is a Jocal four link meson interaction whose matrix elements
are identical to those of the non-local box (replace 8NLE by gLB)" All the vénices
are written with a normalization appropriate for direct matrix elements between
the normalized wave functions ¢{(x A"‘“’xn)"

Cur purpose is eventually to diagonalize the full Hamiltonian in a finite basis
of bare hadrons. To this end we must calculate all the matrix elements connecting
the various bare mesons which are given in terms of wave functions of the form

n

n
Mxl’ cous Xy = (X 00y XN)BXR b, Ty N

N
where E X, = 3 o

i=l
Thus we wish to cajculate analytically the various matrix elements of operators
appearing in the Hamiltonian in this power basis.

The coulomb scattering matrix elements have already been calculated in Eq.
{3.18} in addition to the kinetic energy. These interactions do not change the link
meson number. Both Jocal and nonlocal box scattering will have the same
structure. Let us discuss in detail the nonlocal box case, which involves link
mesons on four different sites. This interaction mixes the link meson number two
and four sectors enabling the bare hadrons to move on the lattice. We note that a
bare hadron containing two link mesons can move only via a second order transition
through a four link meson state. The second effect of the coupling is to couple four
link meson states with different “"polarization™ configurations. Thus four link
meson states can move on the transverse Jattice on their own without having to

couple to the two or six link meson sector. An example of a process induced by the
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magnetic term is shown in Fig. 8, the process is denoted by B(l, 12'3)8 24° {for

generality the number of spectators has been increased to N - 1) which is given by

2 )
BU23, 196, = - 8opp Jdups e dupy (n-m ul)

1

J du'dyidysu," ¢ y,0e yh o Uy ) —mmm e
[t bl ity | 174275 mx*“x,zyizyﬂz’%

2 Yo Y20 o ores Upd U g e U

where

B, v Y
gN(ul,m,, uN) s uy Ruz 2,,...@, Uy N

By B2 By Y YN
bga2{815 Y10 Y30 Ugs wons up) = ) (y"‘) (yfz) (ug) © 5 s luy) ,

K'(Bl' + h)r(Bz' + %)P(B3' + 1) 2
8nLp *

’ L
B(123, 1)6“2,6," =3 r(gkugzu 53'+%)

NBE + BI' + 82' 083' + 1)1‘(y2 +Y 2' + 1),.,r(yN «ﬂ(N“ + 1)
NBK T Yy ¥ Vg * ﬁl‘« BZ'-tB}'«M{z'#".Y NH’N)

All other matrix elements are calculated in an analogous manner. The (nonjlocal
box scattering relates two link meson states in the four link mesons number four

sector. It is represented by Fig. 9 and its value is

. (4.6
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(61’4»52"4 By +Bye HPB4'+ By » Dl B +B ¢ 1)
X’(BRN.BZ‘» soo *BNG + Bl +oes By * N-1)

b4

| T(B "+ WIT(B, + BIT(B) + KITE, » %)
ETTE, +B, + M@, +B,+ D . ®.7)

Two other terms are induced by the current-current interaction. They are,
respectively, the Coulomb annihilation term which is shown in Fig. 10. It relates
states in the link meson four sector. The reason it does not appear in the link
meson two sector is that it contains a colored gluon as the intermediate state in

that case. It is given by

1 ?(81"482‘ B+ By 1%(33’483 + l)e..T(BN"+ B+ 1)
§ TE "+ + By + By + N-1) x

{8y » WIT(B, + BIT(B," + RIT(B, + %)
NB 7B, DT, s By v a = B -8%8,-8) . o

Note that this term is nonzero only between states that have the same parity under
an exchange u; ++u, (u’>>uy). The Jast matrix element needed is the coulomb
production matrix element. It relates the two and four link meson sectors, as

shown in Fig. 11. It is given by

1 DB e By oL} ue TBy o8 o 1) Oy -y Ty, » BTy, + 98)
13 I’(Bl Ve By v By 4 Yy +Y3 ¢85 ¢l )T+ NJ (YR + 72)("(1 *Yyt )

PR, e8Iy, ¢y + 8, +8, ¢+ Iy, +y,+28,"+1)
T, 1Y% 8+ 8y« My, ¢y e 28

T8y + 8+ DNBr e v 4 15+ 3)

T8, s By, oyg ¢ Bye By o ”(YR vy 28y 4 1)

3 . (6.9)
Nﬁz” + Bz + I)NBZ’ *Tg Yy ’?)
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All matrix elements induced by the transverse current-current interaction have not
been multiplied by the coulomb coupling constant (gZCN)Iwaz which is set to be
one. This coupling actually sets the mass scale of the problem. We have
accumulated by now all the necessary information to calculate the masses of the
glueballs. Having allowed the bare hadrons to move it would thus be natural to
form a basis of transverse momentum eigenfunctionss

elPT"m

ey =1

and cajculate the Hamiltonian in this basis. We have constructed the matrix for a
general py along the lines described in this section. The full matrix is given in .
Appendix B.

Before turning to the actual computation of the hadron masses, we note that
although we have restricted our discussion to link meson number not larger than
four it is obvious that we have by now all the machinery necessary to dea] with any
link meson number. All one needs is to solve the n-ink meson bare hadron wave
functiorn equation by the same techniques used for the four body wave function and
then set up the Hamiltonian as done above. The number of terms increases rapidly
of course, but the calculations are straightforward. This scheme is based on the
proposition that the perturbation in the link meson number is indeed reasonable and

provides a convergent procedure; this will be tested by the calculations.

| gn> (6.10)
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V. CALCULATIONS

The theory as formulated consists of three parameters (including an overall
scale) and an unknown function (the potential in the linear representation). This is
a consequence of the theory being treated in a non-covariant gauge and with a non-
covariant cut-off. The relation between parameters fixed by Lorenz invariance can
only be recovered in the continuum limit. The fact that we have modified the
theory for a finite jattice spacing was discussed in detail in Section Il. This jeft us
with the unknown potential function.

What we propose to check is that we have chosen rejevant degrees of freedom
in terms of which a tractable scheme to calculating hadron masses can be
described. At our present state of knowledge this would require a parameter
fitting to masses of known particles. We thus limit ourselves to describing features
of this scheme.

The parameters are:

{1 (EZCN)/MZ., Chosen to be one during the calculations, it sets the scale of
bare hadron masses.

(2) v*2 (or B)—The mass of the link meson (the edge point behavior of the n-
jink meson wave function). In the non-linear o-model with O{N) symmetry this
mass was actually generated dynamically. One would expect that in a covariant
formulation there should be only one hadronic mass scale. The value of 8 controls
the nature of the longitudinal dynamics. Large (small) 3 corresponds to weakly
{strongly) bound link mesons.

(3) By p—The coupling of the norﬂoca.i box, in the continuum theory, it is
essentially the gauge field self-coupling, gzo For a fixed transverse jattice
separation, a, it should be related té gzu However in this calculation we treat it as
a free parameter. géLB/(AE(B)), where AE(B) are bare hadron energy splitting
{which are a function of 8), is essentially the expansion parameter of the effective

bare hadron Hamiltonian.
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{4) There are many other parameters associated with the effective potential
containing Hna” all of which are in principle determined dynamically and calculable
from g2° We however do not know, at the moment, how to perform such a
calculation and we thus pick one term--the local box interaction and treat the
coupling By p a3 another free parameter.

Fixing three parameters one must next choose the basis of states and
truncate them. In the calculations reported here we have chosen 3 even and 3 odd
states in the link meson number two sector to each such classification. There
coerespond two possible “polarization” states {Fig. 2). In the four link meson
sector, one state was chosen from each one-dimensional representation. There are
four such representations (Al, A2, Bl, B2) and to each correspond 10 different
"polarization® states (Fig. 2). Two excitations were picked from the two-
dimensional representation E. To each there correspond 8 states (E does not
contain el, e2 states). All together the basis contained 12+40+32 = 84 bare hadron
states. The states were chosen by their energy ordering in the mass spectrum of
bare hadrons.

We first studied the hadronic mass spectrum by diagonalizing the total
Hamiltonian of zero transverse momentum. In this case the same symmetries that
served to classify the n-link meson states, namely the bare hadrons, also categorize
the eigenstates of the full Hamiltonian. For an illustrative example let us turn to
the Jink meson number two sector. In that case the states Al and A, can form only
three of the five representations of D&a’

Taking the symmetric and antisymmetric combinations of even two body

states one forms the one-dimensional representations of Al and B2
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jAal> = 71? { Af even i Az >Even,
182> = ;}2 (| A0 - (A, 0veN) .

The odd two-body wave function can be placed in a doublet to form the two-

dimensional E representation

(A ’add)
|E> =

1A 04q
Both the A2 and Bl representations are absent from the link meson number two
sector. In order to appreciate this fact Jet us consider a spin & particle on a
transverse lattice. (These resujts are valid also for helicity states in the IMF.) The
irreducible representations of dimension 24 » 1 will be broken into one and two-
dimensional representations on the transverse lattice. By applying standard
methods of group theory one concludes that the spin zero state transforms like Al.
The ﬂ.z = 0 component of the spin one state is in Al while the § 2% 1 components
form two-dimensional E representations. In the spin two case the & 2= 0
compohent transforms like Al. The L, =2l are in an E representation and the
Q,z z $2 form symmetric and antisymmetric combinations which transform accord-

ing to Bl and B2 respectively. The general rule is:

Al
A2

m =0 symmetric
ﬂ.z = W, 28, 22
antisymmeztric

B1 antisymmetric
lz = £2, 26, 210
4

B2 symmetric
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E } L, = tl; £3, 25 .

In the continuum limit one should recover the Lorenz degeneracy. Thus the
absence of the Bi and A2 representations in the two link meson sector means that
these would have to come from the higher link meson number sector. This implies
that the two and four {etc.) sectors have to mix in the continuum Jimit.

Note that one knows already from the study of the bare hadrons in the Jink
meson number two sector that the lowest even eigenstate is lighter, for all 8, than
the jowest odd eigenstate. This leads to degenerate Al, B2 states split away from
an E state, identifying the Al state with a spin zero hadron, B2 with an m =22
symmetric component of a spin two component and E with m = 2l. We get an
embryonic degeneracy between a scalar and a tensor piece of a glueball. If E will
also be related to the tensor then the vector glueball lies way above the scalar and
some components of the tensor. Even in the case that the E will be related to a
vector particle a hierarchy scalar-tensor and a heavier vector has formed.

A similar classification can be obtained for the Jink meson number four sector
at k = 0. These symmetry considerations serve aiso as a check of our computer
program. Most of the eigenfunctions have been checked to show that indeed ajl
eigenfunctions of the total Hamiitonian can be classified according to D& and that
they contain only the allowed combinations in the two and four link meson number
scalar. The classification of all four body states is shown in Appendix C.

In Fig. 12 we show the mass spectrum for two sets of parameters:
2 2
& B =02 ,. &g ® -3.65 &= 1]

BB =085 , gl p=-46 , glg=0 .

These lower lying states are classified according to the D,& symmetry.
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The next question to be addressed is the consistency of the link number
expansion. It is checked by studying the four body content of the low-lying
excitations. These results are summarized in Fig. 12. It itums out that the
expansion is rather satisfactory. The four body mixing in all possible cases (Al, B2
and E) is not too large as to upset the expansion and not too small, thus allowing
the two-body states to move on the transverse lattice. (For the set of values (a)
perturbation theory would give a 50% error while for the set of values (b) although
gé&.ﬂ is very large, perturbation theory gives a correct result within 10% because
8§JLB/AE(M’ the expansion parameter, is small.)

in the absence of a physical glueball spectrum qualitative considerations are
used to zone the relevant range of parameters. For a general set of parameters the
Hamiltonian is not positively definite. The requirement that all bound states have
positive energies constitutes a non-trivial constraint. In particular, for SIZ,B =0, a
curve forms in the 8, 3%5[.8 plane. One defines gfnax to be the largest absolute

value of Eﬁxw allowed for a fixed vajue of 8. gyiax is an increasing function of 8.
its behavior is shown in Fig. 13. In the allowed region of the plane one looks for
those parameters which simulate on a rather large lattice the continuum limit.

The Al-B2 degeneracy is broken once the full Hamiltonian is diagonalized
leading to a scalar-tensor-vector Jike ordering. This result is stable under a large
variation of all the parameters of the theory and is one of the qualitative resuits of
our analysis. One should point ocut that in the calculation of Kogut-Susskind a
scalar-tensor degeneracy is obtained {or more precisely: in a cubic Jattice a spin
two breaks into one three and one two dimensional representations the statement is

that the scalar is degenerate with the three dimensional piece of the tensor) and

they are both jighter than the vector (all of whose components fall in a single three
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dimensional representation on the cubic lattice and thus remain degenerate). As a
matter of fact two interacting spin 1 particles with a conventional potential would
be in an s-wave and thus if the angular momentum interactions are not too large,
one indeed should have the vector lie above the scalar and tenser.

A naive guess could be that having a light link meson mass uz—which is
tantamount to B near zero (strong Jongitudinal coupling)--would pull together the
bare hadron masses and help them mix. However as was shown in Sec. Il by
reducing § to zero one cannot generate even one zero mass hadron {unlike the
situation in the bare quark-antiquark meson sector). The ground states of the
various representations become increasingly heavier because of the “welding
energy” at each transverse site. This a priori spacing of the low lying bare
particles means that a non-negligible coupling should exist between two- and four-
body states, in particular g, o, would have to be large. However for small B the
lowest lying even two-body state has a small mass relative to its separation from
the four body states. Thus a large Bypp falls outside the allowed region. We are
thus pushed to values of 8 around 0.2 and EnLp~ -5 (the values used in Fig. 12)
before a reasonable four-body mixing occurs. Even in this range some improvement
may be desired. The energy difference between the bare two-body even state and
the first four-body B2 state is rather large and it mixes much more into the second
evcited two-body even state only for §= 0.85. 8y p Can be made large enough to
overcome the energy difference and reach a 20% mixture. This reflects itself in
the dispersion relations for non-zero transverse momentum.

Before studying the ky £0 case in detail we note that the local box term has
a negative eigenvalue and thus cannot serve to increase significantly the allowed
region. By studying the structure of theory at k.r 40 one gets additional :

information on the "continuum jike™ behavior of the excitations. The Hamiitonien

¢
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described in the former section is diagonalized for nonzero transverse momentum.
In Fig. 14 we plot the dispersion relation: the energy of the hadrons vs. their
transverse rmomentum. The x and y transverse momentum components are equal.
We first note that each of the lowest lying states involving two and four link
meson mixing satisfies a physical acoustic dispersion. This allows an appropriate
trangverse motion for the hadrons. The next information available relates to the
extent to which the hadrons in this approximation have continuum like properties.
We can study several aspects of this question; in the infinite momentum frame the

dispersion relation is

B:m«mk%

where ¢ stands for the velocity of light. In the continuum }imit all states should
have the same coefficient ¢ and in addition the rotational invariance of the theory
should be restored. In our case one compares ¢ in the x or y direction to ¢ in the
$3° direction (kx = ky‘)“ in Table I we list ¢ for the jowest lying Al, B2 and one of
the E states (for ky £ 0 the E states are no longer exactly degenerate). The large 8
and 8ppp TeBI0n is again more continuum like. For the 45° direction ¢ is the same
for al} representations within 20%. For Al and B2 states the 45° rotation changes
< by less than 10%. The E states are not yet behaving in a satisfying manner. One
state (shown in the table) has a very large value of ¢ and the other {not shown) is
essentially flat (they change roles when going from (kx, 0) to {0, ky))u

For smaller values of 8 the situation is somewhat different for B2 states,
which hardly mix with the high energy four body state. As a final observation we

note that for large 8 both the Al and B2 masses are much smaller than the value of
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the energy for large kT° This is in the right direction as the edge of the Brilouin

zone moves to infinity for small values of the lattice spacing.

Vi DISCUSSION

The transverse lattice, infinite momentum frame version of QCD attempis to
deal directly with the physical degrees of freedom of QCD, Amaimaﬁning and
imposing the full internal symmetry structure of the theory at ﬁ';e cost of the full
Lorentz symmetry. The main thrust of this paper is in actually implementing this
program. This was done by treating the Jongitudinal dynamics nonperturbatively
and perturbing in the transverse motion dynamics. 4

The hadrons emerging from the analysis are composeé! of a superposition of
bare hadrons. Each bare hadron is a weakly bound system of link mesons (8 is
rather large). Link meson number violation is large enough to allow a reasonable
transverse motion but is small enough to validate the expansion in terms of link
meson number. Strongly bound bare hadrons cannot be supported by our
approxivﬁation to the effective potential. An improvement of our understanding of
the linear version is needed before it can be established as a faithful effective
theory at some hadronic distance scale.

We wish to conclude with some remarks on the general characteristics of the
glueball spectrum. Glueballs have the rather unique property of being formed from
gauge particles which are color non-singlets but have triality zero. One would like
to know in what way will the glueball spectrum reflect these special facets of its
congtituents.

in our analysis the Lorentz pattern of the low lying excitations seems to be

explained by a valence gluon picture. It is however not clear that this description
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is faithful. The first source of doubt is the gauge dependence of the separation
between the dependent potential and the independent degrees of freedom.
However if there exists any gauge in which a valence gluon picture serves to
classify the gauge invariant physical states, it is a useful concept. The more
serious problem is the strong coupling like bias inherent in our analysis. In both the

7 and in gur more

straightforward strong coupling calculations in the A°=0 gauge
complicated approach the valence structure js a strong coupling feature. The
expansion in link meson number dictates (as was shown in Section V) the order of
the Lorentz excitations.

To leading order of the ”Nc expansion an infinite number of stable glueballs
was obtained. This is consistent with expectatiunsm from the continuum limit. In
this sense there exists a limit in which gluons {link mesons) are confined and attract
with constant forces. In our scheme there was no algebraic characterization of the
states save that they are color singlets. One may wonder if these states form some
degeneracy patterns associated with a surviving global symmetry. Such a

symmetry should be explicit in a string theory of hadrons.
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APPENDIX A, SOME DETAILS OF THE SOLUTION OF THE
FOUR BODY BOUND STATE EQUATION

The four body bound state equation is simplified when decomposed in terms of

states with a definite Dg6 symmetry. D¢ has four different one dimensional

representations Al, A2, Bl, B2 and one two dimensional representation E. The

character table of the group DQ can be found in standard books on finite
dimensional group&,“ It iss

identity c, 2, 2cy ¢,
Al 1 i 1 i 1
A2 1 1 1 -k -1
B1 1 i -1 1 -l
B2 1 i -1 -1 1
E 2 -2 0 0 )

where the various group members of D“ generate the following transformations on

square whose sides are denoted (in order) by x, y, z, w.

C2 R yowy
CA(WD) XYEW > yzwx
C,270°%) XYIW > wRYZ
Coy XYEW © WZYX
sz IYTW - YRWEZ
czﬂg Xyzw + Zyxw
Cong xyzw > AWZY
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In the two-dimensional E representation one has
-1 0 90° (0 1 zm"_(o -1
Cz’(o ~n) G "(-x o) S o=\l o
0 -1 o1 -1 0 f1 o
Cm’(~1 a) C2’H=(ﬂ o) Cm‘(o 1) sz‘(o «n)

The following trial functions were constructed as irreducible representations of the
various representations {the constraint x +y + z + w = | was imposed). The matrix
elements of the kinetic energy and the potential energy were calculated using Eq.

(3.14) and the algebra was kept under control with the help of MACSYMA,

APPENDIX B. THE HAMILTONIAN FOR GENERAL TRANSVERSE MOMENTUM
The Hamiltonian is given in the basis of two and four body states as defined in
Fig. 2. A dictionary for the symbols is given below and an example was done in Eq.
{8.5).

ngn(xp xz@ 83,, XQ) = (XllizXBXa)B Pﬁ(xp Xz,X3, X@) ) B (3.21)
For o= Al

= xz+yzozz¢w2+xy+yzozw¢m&

x3¢y3423¢w3

i
o
[

P, = x&oy@4z%¢w&¢xzzz¢y2w2«xsz»zx3+y3w¢w3y¢xyzw. . (A1)
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For a= A2
By = xply - %) + ya(z - y) szwiw - 2) + wilx « w)

For a= Bl

Py = {x - 2zly -w)
For a= B2

P@ z xe2-{ysw

Py = xzozz-(yszz)

P, nx3»»33-(y3»w3)

Py s (mezlyw-(y ¢ wixz
For a=E

Po z (X2, 7w

Py = (224 y2 - wd)

Py = (x3 -2 o y3 )

(ywix - 2), xzly - w))

#

1P3

sz = {wzlx - z)y VW()' - w))

(A.2)

(A.3)

{A.8)

(A.3)



4= FERMILAB-Pub-78/60-THY 51~ FERMILAB-Pub-78/60-THY

M = kinetic energy B, B,
C = direct coulomb Ay BR,29%)8, 10 + € BULH1Z) by, BUL, 1236 540 + €, BI2,3%10 6, 5,
LB = local bex : Ay BULIZH) 6y, + e;w,sw')sn, B(2,23496, ;, » e;BU,Wl’Z')& -
B = nonlocal box ' By MyelMysMyshy+C,50C03+C,, +Cy 0
CP = coulomb production . B, 0 My eMaeMgeMy+C 90 39C42Cyy
CA = gc::l;omb annihilation C; B(36,3%)8 w 6223 . B{12,172%6 33,5%,
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APPENDIX C. DECOMPOSITION OF HADRONS, AT ZERO TRANSVERSE Table 1. The velocity of light of various hadrons.
MOM M RE HA YMMETRIE :
OMENTUM, IN TERMS OF BARE HADRON S S The units of C are determined by QZCN)/(!az) =1L

One can classify the hadrons with k‘E‘ = 0 according to the symmetry D&,
However only certain configurations of bare hadrons are allowed In a hadron of a
y & B= 0.2 g2 g = -3.655 8,5 = 0
given symmetry. The following is a list of such a decomposition. The letters

:;:f::;c:;:fo;d to the states AP Az' Bz, Bz, CP Cz, Cj, CQ, n” sz’ Ep Ez Ckxmky Ckx,kyx@
Als Even {a{++) ], Al{bles), clotes), dlas), elea) }, Al 23 22
A2 {bles), clrssal, dlos), elos) |, BI {cloase, B2 3 6
&ae) }, B2 felesss), dlaed} E I9 36
A2 Al{bls) }, A2 {blo=) |, B} {closss} |, E@){closrsd}
Bis Al {cleed}, A2 {cleesd}, B blosd, clo—sl ]
B2{b{es); elo—ms)}
B2: Even {a(+-)}, Al {d(s), els-)}, A2 {d(s-), els-)}, B = 0.05 g3 g = 46185 < 0
Bl {ble-), do=)}, B2 {Ble=), dle-)}, EQ) {clowmsl}, _
E(@) {cle—)} , Ckxzky Co, ok 0
E b M% (g(k:::;)i g Azg @1&;}% : : Y 185 135
o {(2) () e (2) ()] o2 167 17
E 135 270

E(b1<E(1b2)] * | ECDI-EQ2H2
El Mj;)’ (cc((:::))) g wﬁzg(:;)g (S&ﬂ) g

This assumes the following sign comventions for the E statess B(IN123%)=
TE(2X2361) = -E(2)(8123) and E(2N1236) = -E(IN2381) = B(I1N6123).

(E(ﬁ)bl«»E(z)M) , ( x-:mnz-atmx} ,
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FIGURE CAPTIONS
Fig. 1: The masses of two body even (2E) (marked (x)) and odd (20)
{marked (X)) bare hadrons as a function of the radial excitation

index, n. Plots are for 8 = 0.1.

Fig. 22 Two and four body lattice configurations.

Fig. 3s Possible color structure of the D, four body state.

Fig. & Ground state energies of two and four body bare hadrons is

plotted as a function of 8.

Fig. 5 Bare hadron mass spectrum for 8 = Q..

“Fig. 6: The vertices generated by the coulomb terms in the current-
current interaction. Figs. (a) and (b) are the coulomb
scattering terms. Figs. (c) and (d} represent coulomb produc-
tion and annihilation respectively.

Fig. 75 Scattering (Fig. (a)) and production (Fig. (b)) terms resulting

from the transverse magnetic interaction.

Fig. 8 The process denoted by B(1,12'3) 62,9,,

Fig. 9: The nonlocal box scattering term.

Fig. 10s Coulomb annihilation terms,

Fig. 112 Coulomb production terms.



Fig. 12:

Fig. 13

Fig. 18

=50= FERMILAB-Pub-78/60-THY

The hadronic mass spectrum for (a)8 = 0.2, 3§ILB = =3.63,
8 p=0 () B = 0.63, 3!{!&.& = <46, g1 g = 0. The bare hadron
masses are also shown. The arrowed lines indicate the main
bare hadron wave function decomposition of the hadrons. The
number is the mixing probability {in %). For 8 = 0.45 ony

the important two body states were marked.

The maximum 5§ILB for a given B8 which jeads to positive
masses.

Dispersion relation; the energy vs. transverse momentum for
B = 0835 g};“'a = <65 gy p = 0- The transverse momentum is in
the kx - ky direction.
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